Benchmark your Ul
In 3 easy steps

Happy new year!!!
D Meeting
Jan 24th 2023

plug

STEP ONE => Open this page

https://github.com/AuburnSounds/Dplug/wiki/More-Options

e The place for Dplug “options” that meant to be long-lived, versus being just for transitions.

version(Dplug_ProfileUI)

o Goal: Produce a flame graph to benchmark your Ul.
e Usage: Inyour dub.json add "pplug_profileur” to the list of version identifiers.

Now the Ul context holds a traceprofiler() object that can record events, and does so by default. Every event is
recorded for the duration of the session.

In your Ul destructor, put this line:

version(Dplug_ProfileuI)

{
import dplug.core.file;
writeFile("/home/myuser/plugin-trace.json”, context.profiler.toBytes());

}

This JSON file can be open in https://ui.perfetto.dev/ or chrome://tracing/ to explore visually the Ul CPU consumption.

https://github.com/AuburnSounds/Dplug/wiki/More-Options

STEP TWO => Do the 2 steps in there

e Step 2.1=> Add thistodub. json

"versions": [
"legacyMouseCursor"”,
"legacyAUHighResolutionParameters”,

"legacyVST2Chunks",
"legacyZOrder",
"Dplug ProfileUI™

STEP TWO => Do the 2 steps in there

e Step 2.2 => Add this to your gui .d destructor

~this()

1
_fontCouture.destr 2e();

_fontLato.de oyFree();

version(Dplug ProfileUI)

{

import dplug.core.file;
oFile(C:\Users\guill\Desktop\plugin-trace.json ,
context.profiler.toBytes());

Use a file path that can be written from the plugin.

STEP THREE => Run, close, and open the profiler

Demo time.

Example: opening of Couture

) ')
v
A | |

A Process 0

Thread 9264 % (TR (R TR U T RERTR
Thread 14220 Thread 9264 resize Diffuse background IR AW
doDraw
Draw Elements PBR Composite GUI
Thread 18648 i . ‘ poes
draw PBR element
B st [T

Thread 21500 W R

Now what to do with bottlenecks?

- Solution 1: Former advice: draw less, no PBR updates, optimize.

- Solution 2: NEW! For large widgets, use the graphics thread pool for your own work
inonDrawPBR and onDrawRaw

Widgets are drawn in parallel, but how to use
parallelism in a single large widget?

2 new UlElement flags =

/// Is not drawn in parallel with other widgets, when drawn to the Raw layer.
flagDrawAloneRaw = 8,

/// Is not drawn in parallel with other widgets, when drawn to the PBR layer.
flagDrawAlonePBR = 16,

Can access thread pool JUST in onDrawPBR and onDrawRaw! NOT outside of it. Do NOT use in reflow().

Example of PBRBackgroundGUI: constructor

this(SizeConstraints sizeConstraints)

{

(sizeConstraints, flagPBR | flagAnimated | flagDrawAlonePBR);

_diffuseResized =)cNew ! (Owne elRGBA) ;
_materialResized = 11locNew! (OwnedImage!RGBA);
_depthResized = mallocNew! >dImage!L16);

version

Example of PBRBackgroundGUI: onDrawPBR

// Potentially resize all 3 backgrounds in parallel
void resizeOneImage(int i, int threadIndex)
A
ImageResizer resizer;
1f (1= 0)
{
ver31on(Dp1ug ProfileUI) context.profiler.begin(“resize Diffuse background”);
resizer.resizeImageDiffuse(_diffuse.toRef, _diffuseResized.toRef);
ver51on(Dp1ug ProfileUI) context.profiler.end;
}
afi (i ="13)
{

ver51on(Dplug ProflleUI) context.profiler.begin("resize Material background™);
resizer.resizeImageMaterial(_material.toRef, _materialResized.toRef);
veP51on(Dplug_ProF11eUI) context.profiler.end;

ver51on(Dplug ProflleUI) context.profiler.begin(“resize Depth background”);
resizer.resizelmageDepth(_depth.toRef, depthRe51zed toRef);
version(Dplug | ProflleUI) context.profiler.end;

context.globalThreadPool.parallelFor(3, &resizeOneImage);

—— Lots of small Dplug news

- Latest Dplug uses Gamut, so you can load QOIX in addition to JPEG, PNG, and QOI
- dplug master tool, in the future you won't have to build other Dplug tools
$ dplug build <stuff> instead of $ dplug-build <stuff>
- dplug-build —root can build plugins from other directories
- Z-order mostly fixed and available from Wren (like .visibility)

- tailSizelnSeconds() fixed, doesn’'t default to 2 seconds anymore => set it

- macOS Ventura, AAX native M1 support

- events for parameter hovering
- Windows cloud signing support (Certum)
- abit better image resizing (speed and quality)

- fixlaggy controls in non-VST2 in some hosts
Those points are all in https://github.com/AuburnSounds/Dplug/wiki/Release-notes

No real big item here,
but there is a LOT more
work to do.

https://github.com/AuburnSounds/Dplug/wiki/Release-notes

—— When you find a bug in Dplug

- Gives as much information as possible on what you were doing when you saw a
problem

- Noreproducible instructions => what to do?

Questions?

